M-Logger システム解説書

2025年4月1日版

※本資料はバージョン 3.3.20 の製品が対象です

目次

第1章	はじめに	1
1.1	M-Logger システムとは	1
1.2	本資料の構成	1
第2章	M-Logger システムの使い方	2
2.1	温熱環境測定システムの構成	2
2.2	子機 (M-Logger) の構造	3
第3章	スマートフォンを使った計測	5
3.1	準備	5
3.2	ソフトウェアの使い方	6
1)	全体の構成	6
2)	計測方法の設定	6
3)	スマートフォンへの記録	7
4)	記録データの閲覧	8
5)	フラッシュメモリへの記録	8
6)	PC との接続	9
7)	名称の設定1	0
8)	校正1	0
9)	熱的快適性の計算機能1	2
10)	湿り空気物性の計算機能1	2
第4章	PC などを使った計測1	4
4.1	準備1	4
1)	ハードウェア1	4
2)	ソフトウェア1	7
4.2	ソフトウェアの使い方1	8
第5章	遠隔監視システムの構築2	21
1)	Web サーバーで公開するディレクトリ2	21
2)	Windows による遠隔監視システム	2
3)	Raspberry Pi による遠隔監視システム2	:3
4)	遠隔監視画面の調整	27
第6章	ハードウェアの仕様	51
6.1	LED 通知	1
6.2	通信仕様3	2

第1章 はじめに

1.1 M-Logger システムとは

M-Logger は建物の室内温熱環境を把握するための無線計測記録装置です。「M」は「<u>Mini」と「Makunouchi</u>」が由来で、手のひらに乗る小型寸法でありながら、計測できる物理量は乾球温度、相対湿度、グローブ温度、微風速、照度と、盛り沢山です。以下に主な特徴を挙げます。

- ・仕様書や技術資料がすべて無償で公開されている(オープンソース ハードウェア)
- ・64×40×30 mmH の小型な外形(グローブ温度計突出部は 140 mmH)
- ・熱的快適性を評価するために必要な乾球温度、相対湿度、グローブ温度、微風速が計測できる
- ・熱的快適性指標(PMV, PPD, SET*, WBGT)をリアルタイムで演算して表示できる
- ・残業状況やペリメータへの日射入射の状況を推測するための照度が計測できる
- ・コンセント接続せずに単3電池×2本で駆動できる
- ・数週間の連続測定ができる
- ・1 台あたり約 9,000 円で製造することができる
- ・無線でデータ収集ができる
- ・親機(PC)からGUIを使って無線で初期設定ができる
- ・Raspberry Pi などの Linux 系 OS を親機とすることができる
- ・親機をWebサーバー化して遠隔監視ができる(BACnet対応)
- ・計測時間間隔、計測開始日時、計測対象の物理量は任意に設定できる
- ・スマートフォン (iPhone, Android) を使ってデータを収集できる

1.2 本資料の構成

第2章では、M-Loggerの仕様と、これを使った計測システムの全体像について解説します。

- 第3章では、スマートフォンを使って M-Logger を操作する方法について解説します。
- 第4章では、Windows などの PC を使って M-Logger を操作する方法について解説します。

第5章では、WindowsやRaspberry Piなどを使って、遠隔で計測結果を監視するシステムを構築する方法について解説します。

第6章では、M-Loggerと通信するための仕様を解説します。

M-Logger は開発に必要な情報が全て公開されたオープンソース ハードウェアで、本資料の他にも多 くの情報を Web サイト(https://www.mlogger.jp)で公開しています。必要に応じて Web も参照してくだ さい。

第2章 M-Logger システムの使い方

2.1 温熱環境測定システムの構成

M-Logger システムは、温湿度などの物理量を計測する「子機(M-Logger)」と、子機の計測方法を管理 したり、収集したデータを保存したりする「親機」とで構成されます。親機と子機は無線通信で接続され ます(Fig. 2.1)。親機は、スマートフォンまたは一般の PC を使うことができます。

Fig. 2.1 M-Logger システムの構成

スマートフォンを親機にする場合には、親機と子機は Bluetooth Low Energy (BLE)で通信します。この 場合には接続できる子機の台数は1台のみです(Fig. 2.2)。この操作は第3章で解説します。

Fig. 2.2 スマートフォンを親機にする場合

PC などを親機にする場合には、親機と子機は Zigbee で通信します。この場合には複数の子機と接続してまとめてデータを収集することができます(Fig. 2.3)。この操作は第4章で解説します。

Fig. 2.3 PC などを親機にする場合

PC などを親機にする場合の設定は、スマートフォンを親機にする場合に比べてやや複雑です。従って、室内の温熱環境を簡易に把握したい場合にはスマートフォンを親機とし、本格的な多点計測をしたい場合には PC などを親機にすると良いでしょう。

2.2 子機 (M-Logger) の構造

子機は、乾球温度、相対湿度、グローブ温度、微風速、照度の計測機能を持ちます。 子機の要素を Fig. 2.4 に示します。

Fig. 2.4 子機 (M-Logger) の要素

グローブ温度計と風速計は基板とは独立しており、持ち運ぶときには Fig. 2.5 に示すようにフタのツ メに引っ掛けて固定します。計測時には Fig. 2.6 に示すように接続端子に挿して使います。

Fig. 2.5 風速計とグローブ温度計の収納

Fig. 2.6 風速計とグローブ温度計の接続

照度計は基板に直接に設置されており、フタの角の乳透色アクリル板(透過率 60%)の下にあります。 照度を計測する場合にはこの部分がテープなどで塞がれないように注意してください。また、可変抵抗器 は風速計を校正するために使います。従って、特別の理由が無い限り、回転させて抵抗値を変えないよう にしてください。 M-Logger は2本の単3電池または microUSB からの給電で動きます。電池で動かす場合には裏面の電 池ボックスに単3電池を差し込み、スイッチを「BAT」側に倒します。microUSB で動かす場合には USB 端子に microUSB ケーブルを挿し、スイッチを「USB」側に倒します。

スイッチを入れると、LED が1秒間隔で点滅を始めます。これは親機からの通信を受け入れる準備が できたことを表しています。点滅回数は1回ですが、フラッシュメモリカードが挿入されていて、カード が認識されている場合には2回点滅となります。親機から計測項目や計測時間間隔を設定し、正常に計 測が始まるとLED の点滅は5秒に1回に変わります。

微風速を計測するときには、風速計のプローブの温度が上がります。せいぜい 40 ℃ 程度のため、危険 はありませんが、計測値が異常になるため物が接触しないようにする必要があります。

子機が電池でどれだけ稼働できるかは、計測の設定内容に依存します。最も電池を消費するのはプロー ブを昇温させる必要がある風速計のため、その計測時間間隔によって大きく変化します。Fig. 2.7 に計測 時間間隔と計測可能時間の関係を示します。

Fig. 2.7 の実験結果および実機の電流計測結果を使って作成した、計測可能時間 *T_{mes}* [h]の推定式を次に示します。

$$T_{mes} = 0.5 \frac{V_{Bat}}{0.5 + 72 \min\left(1, \frac{20}{t_{sp,vel}}\right) + \frac{1.2}{t_{sp,other}}}$$

ここで、*V_{Bat}* [mAh]は電池の容量(Eneloop Proの場合には 5,000 mAh)、*t_{sp,vel}* [sec]は風速計の計測時間間隔、*t_{sp,other}* [sec]はその他のセンサの計測時間間隔です。

第3章 スマートフォンを使った計測

3.1 準備

スマートフォンを親機にする場合には、特別なハードウェアを追加する必要はありません。iPhoneの場合には Apple Store、Android の場合には Google Play に接続し、「mlogger server」で検索して必要なソフトウェアをダウンロード・インストールすればすぐに使えます(Fig. 3.1)。

Apple Store: https://apps.apple.com/jp/app/mlogger-server/id1599907037 Google Play: https://play.google.com/store/apps/details?id=net.hvacsimulator.mls Fig. 3.1 ソフトウェアのダウンロード

親機と子機は Bluetooth Low Energy (BLE)を使って通信するため、スマートフォンの設定で、ソフトウェアに BLE による通信許可を与える必要があります (Fig. 3.2)。特に Android の場合には、仕様により BLE を有効にするには「位置情報」の許可も与える必要がある点に注意が必要です。

8:57		8:56 📥 🕰 🔍 🔸	💐 🗟 🛇 100% 🛢
く設定 MLS_Mobile	iPhone	く アプリ情報	Android
"MLS_MOBILE"にアクセスを許可		MLS_Mobile インストール済み	
Siriと検索	>	プライバシー	
(゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙ (ヮ)) モバイルデータ通信		通知 許可	
		権限 位置情報	
		アプリタイマー	

Fig. 3.2 Bluetooth LE 通信権限の付与

3.2 ソフトウェアの使い方

1) 全体の構成

ソフトウェアには4つの機能があり、下部のタブで切り替えます(Fig. 3.3)。Fig. 3.3.(1)は子機への接続、Fig. 3.3.(2)は測定データの閲覧・操作、Fig. 3.3.(3)は熱的快適性の計算、Fig. 3.3.(4)は湿り空気の計算、です。この内、(3)と(4)は子機を必要としない補助機能です。

10:26	ati 🗢 🔳	5:04	all 🗢 💼	5:24	al 🗢 🖿	5:05	all 🗢 🗖
MLスキ	テャナ	測定データー覧		熱的快適性の計	算機	湿り空気熱物性の	D計算機
MLogger_0508	-62 dBm	MLogger_020		PMV PPD	SET*	乾球温度と相対湿度	
MLogger_0520	-65 dBm 📲	2023/01/03 1829 bytes 2023/01/04 7434 bytes		1.06 28.6	29.55	乾球温度 [°CDB]	26.0
MLogger_0502	-69 dBm 📲	2023/01/06 826 bytes		乾球温度 [°CDB]	26.0	相対湿度 [%]	50.0
MLogger_0510	-63 dBm 📲	2023/01/07 531 bytes	削除	相対湿度 [%]	50.0	絶対湿度 [g/kg]	10.5
MLogger_0507	-62 dBm 📲	2023/01/11 1020 bytes	133134	平均放射温度 [°C]	26.0	湿球温度 [°CWB]	18.7
MLogger_0503	-66 dBm 📲	MLogger_200		相対気流速度 [m/s]	0.10	比エンタルピー [k]/kg]	52.9
MLogger_0506	-66 dBm 📲	2023/01/06 10263 bytes 2023/01/07 1593 bytes		着衣量 [clo]	1.20	比重量 [kg/m3]	1.16
MLogger_0509	-67 dBm 📲	2023/01/08 1416 bytes		代謝量 [met]	1.10	大気圧 [kPa]	101.3
		MLogger_201 2023/01/04 472 bytes 2023/01/05 708 bytes 2023/01/06 2891 bytes		 着次を選手 満加を選手 	R	夏季-屋内 夏季-屋外	冬季-屋内 冬季-屋外
(1)		2023/01/07 (2) MLogger 301		_	(3)		(4)
ML Scanner Data Files	Thermal comfort Moist air	ML Scanner Data Files Thermal com	fort Moist air	ML Scanner Data Files Therm	B al comfort Moist air	ML Scanner Data Files Therm	nal comfort

Fig. 3.3 4つの計算機能

2) 計測方法の設定

子機への接続タブで下方にプルダウンすれば新しい子機が探索され、起動している子機のリストが更新されます(Fig. 3.4.(1))。

リスト表示された子機の1つをタップすると、詳細設定画面に移ります。それぞれの子機の内部には 計測に関わる設定が保存されていて、この画面でその設定内容を変更することができます。

上部には「測定項目と測定間隔」の欄があります(Fig. 3.4.(2))。ここでは、乾球温度、相対湿度、グローブ温度、風速、照度のそれぞれを計測するか否か、計測する場合の時間間隔、計測開始日時を設定できます。

これらの設定は子機の内部に記録されています。「M-Logger から設定を受信」をタップすれば子機に保存されている設定を受信できます。逆に、設定を変えて「M-Logger へ設定を送信」をタップすれば新しい設定で子機の情報を上書きできます。子機の情報と異なる値に設定を変えた場合には、その項目は赤字で表されます(Fig. 3.4.(3))。

Fig. 3.4 子機への接続

3) スマートフォンへの記録

子機が計測した値は、無線でスマートフォンへ送信するか、計測器に挿入したフラッシュメモリに記録 するか、2通りの方法で保存できます。

スマートフォンに送信する場合には、「Phone (Fig. 3.5.(1))」をタップします。

Fig. 3.5 スマートフォンに記録

画面が切り替わり、乾球温度、相対湿度、グローブ温度、風速、照度が表示されます。また、これらの

計測値にもとづいて演算された MRT、PMV、PPD、SET*も表示されます。

熱的快適性の計算のためには着衣量と代謝量の値を仮定する必要があります。これらを変更するには 「着衣を選択」または「活動を選択」をタップしますが、その操作の詳細は後述します。

Back をタップして前の画面に戻れば自動で計測は終了されます。正常に終了すると子機の LED は再び 点滅状態に戻ります。

4) 記録データの閲覧

スマートフォンで受信したデータは自動で記録され、「測定データの閲覧・操作」タブで表示させるこ とができます。「測定データの閲覧・操作」タブには、子機の ID ごと、日付ごとにデータが一覧表示され ます。項目を左にスワイプ (Fig. 3.6.(1)) すれば、データをコピーまたは削除できます。また、項目をタ ップ (Fig. 3.6.(2)) すればデータの中身をテーブル表示することができます。この画面でボタンをタップ (Fig. 3.6.(3)) すればデータのコピーまたは削除ができます。クリップボードにコピーされるデータは CSV 形式のテキストデータで、表計算ソフトウェアなどを使えば編集できます。

Fig. 3.6 記録された計算値の閲覧

5) フラッシュメモリへの記録

フラッシュメモリカードとしては、TF (Trans flash) カード、MM (Multi media) カードまたはこれら の互換カードに対応しています。これらのカードに記録するには、まず、子機にカードを認識させる必要 があります。Fig. 3.7 に示す位置にカードを差し込み、カードが正常に認識されると LED の点滅が 1 回か ら 2 回に変わります。なお、本計測器は FAT32 形式にしか対応していません。一般に 32GB を超える SDXC 形式のカードは exFAT でフォーマットされているため、このようなカードを使う場合には一旦、Windows などでカードを FAT32 でフォーマットする必要があります。

カードが正常に認識されたら「Flash (Fig. 3.7.(1))」をタップします。カードへの記録が始まるとスマートフォンとの接続は解除され、初期画面(M-Logger 一覧)に戻ります。計測器は電池を節約するために

できる限りスリープするようになりますので、再びスマートフォンと接続するためには、計測器を一度 Offにして再起動する必要があります。

Fig. 3.7 TFC/MMC へ記録

6) PC との接続

「PC との接続設定(Fig. 3.8)」の欄は、PC などを親機とする場合に使うため、後ほど第4章で解説します。

10:28	''II 🕹 🔲									
く MLスキャナ 測定方法の設定										
(IIII) Phone PC	Flash									
測定項目と測定間隔										
乾球温度と相対湿度	1 sec									
グローブ温度	1 sec									
風速	1 sec									
照度	1 sec									
測定開始日時 2021/01/0	00:00									
▲ M-Loggerから設 ▲ M-Loggerへ設済	定を受信									
PCとの接続設定										
♥ 常設モードに移行										
R PAN IDを変更										
✤ 通信状況LED表示	の有効化									
8 🖹 😅	0°									
ML Scanner Data Files Thermal con	ntort Moistair									

Fig. 3.8 PC との接続設定

7) 名称の設定

子機は ID である「XBee 名称」の他、ユーザーが自由に設定できる「名称」を持っています。「M-Logger の名称を設定 (Fig. 3.9.(1))」をタップすれば、この名称を変更できます。

Fig. 3.9 子機の名称の設定

8) 校正

製品は出荷時に、照度を除いて、ある程度の校正をしていますが、自分で校正することもできます。「測 定方法の設定」画面で、スマートフォンを振ると校正のためのボタンが表示されます(Fig. 3.10.(1))。

「補正係数を設定する(Fig. 3.10.(2))」をタップすると、「y=Ax+B」の形で線形補正するための補正係数を設定することができます。「設定送信」で子機に補正係数が送信され、「設定受信」で現在の補正値が受信できます。

「風速計を校正する」をタップすると、風速の特性係数を推定することができます(Fig. 3.11.(2))。まず、風道などを使い、0.0 m/s、0.3 m/s、0.7 m/s、1.5 m/s の条件を作ります。それらの環境に M-Logger を曝し、風速を推定するための電圧を読みます(Fig. 3.11.(2))。左が 10 秒の平均値、右が瞬時値です。値が +分に安定したら対応する風速をタップし(Fig. 3.11.(3))、風速と電圧の関係を更新します。この電圧 V [V]と風速 vel [m/s]の関係は次式で表されます。

$$vel = C_b \left(\frac{V}{V_{ref}} - 1.0\right)^{C_a}$$

ここで V_{ref} [V]は無風時の電圧、 $C_a \ge C_b$ は特性係数です。電圧の値を変えるたびに特性係数は自動で推定されます。適切な値が得られたら「Update Coefficients」をタップして特性係数を M-Logger に記録します。

Fig. 3.10 子機の校正

Fig. 3.11 風速の校正

9) 熱的快適性の計算機能

「熱的快適性の計算」タブでは熱的六要素を指定して PMV、PPD、SET*を計算することができます。 「着衣量を選択」または「活動を選択」ボタンをタップすると着衣や活動の種類を別画面で指定すること ができます。着衣は1つ以上の項目を選択して「Apply」をタップ、活動は1つの項目をタップすればそ れぞれ対応する Clo 値と Met 値が反映されます。

5:05	■ خ اµ،	>	5:24		.ul 🗢 🔲
く 着衣量言	↓算機 着衣量計算機		熱的	快適性の計算	機
Cl	o value = 0.42		PMV	PPD	SET*
	0.25 clo		1.06	28.6	29.55
1	長袖フランネルシャツ 0.34 clo		乾球温度 [°CDB]		26.0
	長袖スウェットシャツ		平均放射温度 [°C]		50.0
ブボンと	0.34 clo カバーオール		相対気流速度 [m/s]		26.0
	短パン		着衣量 [clo] 代谢量 [met]		1.20
	U.U6 CIO		_0_		1.10
	膝上丈パンツ 0.08 clo	<		着衣を選択	
	薄手長ズボン		د	🕻 活動を選択]
	0.15 clo				
	厚手長ズボン				
* ML Scanner	Data Files Thermal comfort Moist a		ML Scanner Data Fil	les Thermal co	omfort Moist air

Fig. 3.12 熱的快適性の計算機能

10) 湿り空気物性の計算機能

「湿り空気の計算」タブでは湿り空気の2つの物性から残りの物性を計算できます。上部のコンボボックスを選択(1)すれば、条件とする2つの物性の組み合わせを選択できます。下部のボタンをタップ(2) すれば典型的な温湿度条件へ初期化することができます。

5:05	ul S 🗖		5:05	al ବି 🔳
湿り空気熱物性の計	算機	(1)	湿り空気熱物性の	の計算機
乾球温度と相対湿度			相対湿度と絶対湿度	
乾球温度 (*CDB) 相対湿度 (%) 絶対湿度 (g/kg) 湿球温度 (*CWB) 比エンタルビー [kj/kg] 比重量 [kg/m3]	26.0 50.0 10.5 18.7 52.9 1.16		乾球温度 (*CDB) 相対温度 (%) 絶対温度 (g/kg) 湿球温度 (*CWB) 比エンタルビー [k]/kg] 比重量 [kg/m3]	26.0 50.0 10.5 18.7 52.9 1.16
大和庄 [K ^P 3] 夏季-夏内 夏季-夏外 ML Scanner Data Files Thermal co	101.3 冬季-服内 冬季-服外 wnfort Moist air	(2)	Xxtt [[Pa] ※## [Pa] ※####################################	101.3 Done 2000ビー と重量 次対温度 2000ビー

第4章 PC などを使った計測

4.1 準備

1) ハードウェア

PC などを親機として使う場合には、子機からのデータを XBee による Zigbee 通信で受け取ります。このため「XBee モジュール」を PC などに取り付けて認識させる必要があります。

XBee は Fig. 4.1 に示すように、USB 端子を使って取り付けることが一般的です。

Fig. 4.1 XBee (USB 接続)

現在、市場に出回っている XBee のバージョンの多くは、S2C と 3.0 ですが、いずれも使用することができます。また、以下の USB 接続モジュールについては動作確認済みです。

https://akizukidenshi.com/catalog/g/gK-06188 https://flashtree.com/products/11697

ただし、上記の USB 接続モジュールを使うためには、FTDI 社(www.ftdichip.com)の D2XX ドライバ をインストールする必要があります。

XBee には購入時点では初期値が書き込まれており、そのままでは子機と通信できません。この設定を 変えるためには、XBee の製造元である Digi が公開している XCTU (Fig. 4.2) というソフトウェアをイン ストールして操作する必要があります。

https://www.digi.com/products/embedded-systems/digi-xbee/digi-xbee-tools/xctu

Fig. 4.2 XCTU

具体的には、Table 4.1 に示す項目の設定内容を変える必要があります。

Table 4.1 XBee 端末の設定内容	
------------------------	--

	項目	変更する内容
ID	PAN ID	0x19800614
SP	Cyclic Sleep Period	0x64 (=1000 msec)
SN	Number of Cyclic Sleep Periods	3600 (sec)
CE	Coordinator Enable	Enabled
SM	Sleep Mode	No sleep
AP	API Enable	API enabled

以下で各項目について解説します。

• ID

Zigbee のそれぞれのネットワークは固有の ID を持っており、「PAN ID」と呼ばれています。距離に関わらず、異なる PAN ID を持つ機器は相互に通信しません。M-Logger システムでは標準の「PAN ID」として 16 進数で「0x19800614」を使います。もしも実測現場で M-Logger システムを使った複数のネットワークを作りたい場合には、ネットワークごとにこの値を変更する必要があります。

• SP

親機が子機へのメッセージを保持する時間です。M-Loggerの子機は標準では通信時に最大で1秒のスリープをするため、その値に合わせて1秒とします。

• SN

親機と子機のネットワークはこの値の3倍の時間、維持されます。従って、一旦、親子関係が確立する と特別な指令をしない限り、3時間はネットワークが続きます。

 $\boldsymbol{\cdot} \operatorname{CE}$

XBee の用語では親機を「Coordinator」と呼びます。「CE」は親機か否かの設定で、Enabled とすれば親 機になります。

• SM

XBee がスリープモードに入る設定で、親機は常時起動する必要があるため、「No Sleep」とします。 ・AP

XBee 同士の通信の方式を表しています。子機は標準で API で通信するため、親機も子機に合わせて API enabled とします。

なお、XBee ネットワークの仕様上、Coordinator に接続できる Xbee は 20 台までです。従って、標準で は親機に接続できる子機の台数は 20 台が上限となります。この数を増やすには Coordinator を補助する 「Router」と呼ばれる XBee を追加する必要があります。Router も 20 台の XBee を管理できるため、Router を1台増やせば 40 台の子機から成るネットワークを構築できます。

XBee を Router として機能させるには、Table 4.1 と同じ設定をし、「CE: Coordinator Enable」の項目のみ 「Disabled」に変更します。Fig. 4.3 に示すように、コンセントに直接に挿して使う XBee も販売されてい ます。

Fig. 4.3 XBee Wall Router (https://akizukidenshi.com/catalog/g/gM-10502)

Router の数を増やせば子機の数も増やせますが、無線が混雑してデータを取りこぼす危険性も増加し ます。小部屋での試験では全部で 80 台の子機を設置した場合、3 秒間隔での計測が限界でした。また、 データを取りこぼす可能性は周囲の無線状況にもより、例えば電子レンジが使われているときにはかな り通信に障害が生まれます。

2) ソフトウェア

親機で動かすソフトウェアの最新版は Web サイト(https://github.com/et0614/mlogger/releases)からダウ ンロードできます。

これらは Microsoft .NET 8.0 以上で動作するため、一般の Windows PC だけではなく、Mac や Linux を 使うこともできます。Raspberry Pi を使えば実測現場で省スペースに熱環境計測システムを構築できるで しょう。.NET ランタイムは、必要に応じて Microsoft 社の Web サイトからダウンロードしてください。

https://dotnet.microsoft.com/download/dotnet

ダウンロードした圧縮ファイルを解凍すると、Fig. 4.4 のディレクトリが得られます。「MLServer.exe」 が中心となるソフトウェアですが、その他にも計測を補助するいくつかのソフトウェアが用意されてい ます。

MLC	1
MLServer	: トツノナイレクトリ
data	
⊢ index.htm	: Web サーバー用のトップページ
│	: 収集したデータ(子機ごとの csv ファイル)
	: その他の Web サーバー用ファイル
SimpleWebServer.exe	: 簡易 Web サーバーソフトウェア
— MLServer.exe	:データ収集を再開するソフトウェア
mlnames.txt	:子機の名称設定用ファイル
DDNSUpdater.exe	: DDNS サービスを使うためのソフトウェア
setting.ini	: データ収集ソフトウェアの初期設定ファイル
ddns.ini	: DDNS サービスの初期設定ファイル
L	: その他の実行に必要なファイル

Fig. 4.4 ソフトウェアのディレクトリ構成

4.2 ソフトウェアの使い方

前節で解説した XBee を PC などに USB 接続し、MLServer を起動します。Fig. 4.5 に起動画面を示します。

Fig. 4.5 MLServer の起動画面

USB 経由で XBee が認識されると、Fig. 4.5 に示すように

COM*n*: Connection succeeded. S/N = 0013A200xxxxxxx

と表示されます。ただし、COMnの「n」の値は PC などでどのポートを使うかによって異なります。また「0013A200xxxxxxx」は XBee の固有のアドレスを表しており、「x」の値は XBee ごとに異なります。

これで親機の XBee は通信準備ができたため、子機を立ち上げれば通信が始まります。

スマートフォンの「PC (Fig. 4.6.(1))」をタップすると、子機は親機の XBee に向けて計測値を送信し始めます。

親機が子機からのデータを受信すると、その内容は Fig. 4.7 に示すように MLServer の画面に転送されます。図では「4207BD4A」という XBee アドレスを持つ子機からデータ送信を受けています。

10:28	.ıl ≎ ∎)	
✓ MLスキャナ 測定方法の設定		
(1) (1) (1) (1)	Flash	
乾球温度と相対湿度	1 sec	
グローブ温度	1 sec	
風速	1 sec	
照度	1 sec	
測定開始日時 2021/01/01	00:00	
🛓 M-Loggerから設定	を受信	
Loggerへ設定を	と送信	
PCとの接続設定		
₩ 常設モードに移	ίī ((2)
Repair IDを変す	E ((3)
通信状況LED表示の	有効化	(4)
ML Scanner Data Files Thermal comf	ǰ ort Moist air	

Fig. 4.6 PC との接続設定

Fig. 4.7 データの受信

親機が受信したデータは「data」ディレクトリの中に csv 形式のファイルで保存されます。

Table 4.2 は計測データの例です。列が表す情報は左から順に、親機がデータを受信した日時、子機が計測した日時、乾球温度[°C]、相対湿度[%]、グローブ温度[°C]、微風速[m/s]、照度[lx]、微風速(電圧)[V]、汎用電圧[V]です。

2024/1/15 12:50:36	2024/1/15 12:50:36	24.51	21.30	24.94	0.1706	371.46	1.579	0
2024/1/15 12:50:37	2024/1/15 12:50:37	24.51	21.28	24.88	0.1612	372.22	1.572	0
2024/1/15 12:50:38	2024/1/15 12:50:38	24.50	21.34	24.88	0.1544	371.97	1.567	0
2024/1/15 12:50:39	2024/1/15 12:50:39	24.49	21.31	24.88	0.1697	371.97	1.578	0
2024/1/15 12:50:40	2024/1/15 12:50:40	24.51	21.30	24.88	0.1614	371.46	1.572	0
2024/1/15 12:50:41	2024/1/15 12:50:41	24.51	21.30	24.94	0.1626	371.71	1.573	0
2024/1/15 12:50:42	2024/1/15 12:50:42	24.51	21.24	24.88	0.1616	370.94	1.573	0
2024/1/15 12:50:43	2024/1/15 12:50:43	24.52	21.23	24.88	0.1450	371.71	1.560	0
2024/1/15 12:50:44	2024/1/15 12:50:44	24.51	21.25	24.94	0.1727	371.71	1.580	0
2024/1/15 12:50:45	2024/1/15 12:50:45	24.52	21.29	24.88	0.1796	371.97	1.585	0

Table 4.2 計測データの例

現場で長期に M-Logger を設置したい場合には、計測の途中で電池がなくなることがあります。このと きに毎回計測の設定をやり直すことは煩雑です。そこで、電池の入れ替えなどで M-Logger を一旦 Off に した場合にも、起動と同時にすぐに以前に設定した内容で計測を開始させるモードが用意されています。

Fig. 4.6.(2)の「常設モードに移行」がそれで、これをタップすると、M-Logger を起動するとすぐに計測 が始まるようになります。逆に、スマートフォンからの操作は受け付けなくなります。従って、再びスマ ートフォンからの操作ができるようにするためには、強制的にこのモードを抜け出す必要があります。こ のためには Fig. 2.4 に示した Reset スイッチを 3 秒以上、長押しします。LED が 3 回点滅して常設モード が解除されます。

なお、M-Loggerの日時は電源供給がなくなると初期化されるます。従って、常設モードでの計測時に 電池の入れ替えをした場合などには、親機がデータを受信した日時を計測日時とみなします。

Fig. 4.6.(3)の「PAN ID の変更」は Table 4.1 で解説したネットワーク固有の ID を変更するためのボタン です。通常は変更は不要です。

Fig. 4.6.(4)の「通信状況 LED 表示の有効化/無効化」は XBee の通信状況を青色 LED で表示するか否かの設定です。

第5章 遠隔監視システムの構築

現場での実測の場合、遠隔で計測状況を確認できると便利です。そこで、本章ではPC などを使って遠隔監視システムを構築する方法を解説します。

1) Web サーバーで公開するディレクトリ

前章で解説したように、MLServer は計測したデータを「data」ディレクトリに csv 形式でのファイルで 保存していきます。従って、このディレクトリを Web サーバーで公開できれば、外部から現在までの計 測結果を確認できるようになります。

なお、「data」ディレクトリの中には、csv 形式のファイルの他に、現在の計測状況を表す html ファイル (index.htm) も生成され、これをブラウザで開くと Fig. 5.1 のような表示が得られます。子機のアドレス、名称、計測値と最終の測定時刻の他、これらの物理量から求めた熱的快適性指標(SET*, PMV, PPD) も表示されます。

1 制定状况	×	+													- 🗆 ×
$\leftarrow \rightarrow c$	 ・ → C ▲ セキュリティ保護なし logger.ddo.jp ・・ ・ (発展していません)・・・ ・・ ・・ ・・														
据编台数:5台															
夏定器一覧: 抽出															
最終接続	潮定器名▼	アドレス	計測日時	乾球温度[C]	相対湿度[%]	計測日時	グローブ温度 [C]	計測日時	微風速 [cm/s]	計測日時	照度[lx]	SET	PMV	PPD[%]	DL
3/4 20:01:30	ap07	41B5F4EA	3/4 20:01:53	21.5	41.5	3/4 20:01:53	21.68	3/4 20:01:53	25.7	3/4 20:01:53	0.55	27.1	0.46	9.3	41B5F4EA.csv
3/4 20:01:32	ap06	41B5F4FC	3/4 20:01:55	21.8	40.7	3/4 20:01:55	23.37	3/4 20:01:55	19.7	3/4 20:01:55	0.51	27.8	0.64	13.5	41B5F4FC.csv
3/4 20:01:34	ap04	41B5F525	3/4 20:01:52	21.7	37.0	3/4 20:01:52	22.24	3/4 20:01:52	17.5	3/4 20:01:52	0.46	27.3	0.56	11.6	41B5F525.csv
3/4 20:01:33	ap03	41B5F47D	3/4 20:01:52	21.6	39.4	3/4 20:01:52	23.30	3/4 20:01:52	8.2	3/4 20:01:52	0.54	27.6	0.75	16.9	41B5F47D.csv
3/4 20:01:35	ap02	41B5E814	3/4 20:01:52	21.7	36.2	3/4 20:01:52	21.54	3/4 20:01:52	9.3	3/4 20:01:52	0.48	27.0	0.61	12.9	41B5E814.csv

Fig. 5.1 「data」ディレクトリ内の「index.htm」

子機の名称は、MLServer と同階層にある「mlnames.txt」に以下のように XBee の下位アドレスと名称 の組をリストで記入することで反映できます。

42114F7E:SIH-01	
42114F57:SIH-02	
420BCCD1:SIH-03	
420D3FC1:SIH-04	

PMV や PPD などの熱的快適性を計算するためには、着衣量や代謝量を設定する必要があります。これ らの値は MLServer と同階層にある「setting.ini」で設定します。

Fig. 5.1 には最終の計測値のみが表示されていますが、過去の値を参照したい場合には、表の最右端の リンクをたどることで、子機ごとの csv ファイルをダウンロードできます。 Fig. 5.2 に遠隔監視の方法を示します。親機に Pocket Wifi を接続し、インターネット越しに子機の状態を監視できるようにします。

Fig. 5.2 遠隔監視の方法

2) Windows による遠隔監視システム

MLServer と同階層にある「SimpleWebServer」は簡易 Web サーバーのソフトウェアです。これを起動すると「data」ディレクトリの中身をルートとする Web が公開されます。ただし、事前に「netsh」を使って URL を予約する必要があります。詳細は、

https://docs.microsoft.com/ja-jp/dotnet/framework/wcf/feature-details/configuring-http-and-https」 を参照してください。

正常に Web サーバーが稼働すれば、ブラウザで「127.0.0.1」を入力すると Fig. 5.3 のように Basic 認証 画面が表示されます。ユーザー名に「user」、パスワードに「pass」を入力すると Fig. 5.1 が表示されます。 ユーザー名とパスワードは、SimpleWebServer と同階層にある「setting.ini」の中身を書き換えれば変更で きます。

このサイトに http://127.0	Cアクセスするにはサインインしてください 0.0.1 では認証が必要となります	
ユーザー名		
パスワード		
	サインイン	キャンセル

Fig. 5.3 簡易 Web サーバーの Basic 認証画面

親機のWebサーバーに接続するためには、親機のIPアドレスが必要になります。固定IPが手に入るのであれば問題は無いですが、一般にPocketWifiはIPアドレスが変動します。このため、現場での実測を続けている間にIPアドレスが変わって接続できなくなる危険性があります。

このような変動する IP アドレスと固定のホスト名とを紐づける Dynamic DNS (DDNS) というサービ スが各社から提供されています。MLServer と同階層にある「DDNSUpdater」は、このような DDNS サー ビスを使うためのソフトウェアです。対応している DDNS サービスは

- dynamic DO (ddo.jp)
- NoIP (www.noip.com)
- DDNSNow (ddns.kuku.lu)

の3つです。それぞれのサービスに登録し、登録内容を「ddns.ini」に設定し、「DDNSUpdater」を起動すると、定期的に現在のIPがDDNSサービスに送られ、固定ホスト名で親機に接続できるようになります。

例えば dynamic DO で「mydomain.ddo.jp」というドメインを登録し、「mypass」というパスワードを設定した場合には、ddns.ini に以下のように設定します。各行の冒頭の「#」はコメント行を表します。

これでブラウザに IP アドレスではなく「http://mydomain.ddo.jp」を入力することで、親機に接続できる ようになります。

> #DDNS サービスの種類を指定 ## ddo.jp ## service=dynamicD0; ; sseqvm=bwq //パスワード host=mydomain.ddo.jp; //ドメイン・ホスト名 ## www.noip.com ## #service=NoIP; //ID #usr=userid; #pwd=password; //パスワード //ドメイン・ホスト名 #host=xxx. ddns. net; ## ddns. kuku. Iu ## #service=DDNSNow; #usr=userid; //ID #pwd=password; //パスワード //更新時間間隔[sec] update=300; gip=https://api.ipify.org; //IP 表示 Web サービスのアドレス

Fig. 5.4 ddns.iniの設定例

3) Raspberry Piによる遠隔監視システム

遠隔監視のための親機として Raspberry Pi を使えば、Linux 用の堅牢な Web サーバーを使えますし、実 測現場で停電が起きた場合にも長時間、電池で駆動を続けることができます。以下に、このための設定を 説明します。

Rapsberry Pi の初期化については、説明を省きます。以下の説明ではユーザー名を「*pi*」とし、デスクトップに「MLServer」ディレクトリがあることを前提にします。

・Raspberry Pi への電源接続

現場での長期実測の場合、一般の停電や法定点検のための停電などがあるため、コンセントからの電源 供給が確実に続くという保証はありません。このため、コンセントと Raspberry Pi の間に電池を挟むこと で、停電時には電池から電源が供給されるようにすればシステムがさらに堅牢になります(Fig. 5.5)。

Fig. 5.5 電池経由の電源接続

なお、充電と放電とを同時にする機能を「パススルー機能」と呼びます。パススルー機能を備えていない い電池も多いため、電池の購入にあたっては注意が必要です。

Raspberry Pi の消費電力は約 600 mA で 5V のため、3 W 程度です。従って、80 Wh 程度の容量があれ ば、電池のみで 24 時間の連続稼働ができます。20,000 mA で 3.7 V (74 Wh)、パススルー機能付きの電 池であれば 1 万円を下回る金額で調達できます。

・.NET 実行環境の導入

Raspberry Pi では Linux 系の OS である Raspberry Pi OS が使われています。従って、MLServer を動かす ために Raspberry Pi OS 用の.NET 実行環境を導入する必要があります。コンソールで以下のコマンドを入 力すれば、.NET 実行環境が導入できます。

\$ curl -sSL https://dot.net/v1/dotnet-install.sh | bash /dev/stdin --channel Current

以下のコマンドで dotnet へのパスを通します。

\$ echo	'export	DOTNET_ROOT=\$HOME/.dotnet' >> ~/.bashrc
\$ echo	'export	PATH=\$PATH:\$HOME/.dotnet' >> ~/.bashrc
\$ source	~/.bas	hrc

正常に導入できていれば、以下のコマンドで.NET のバージョンが表示されます。

\$ dotnet -version

・再起動時の設定

電池があったとしても予期しない再起動が起きる危険性はあります。このため、再起動時に自動でデー タ計測が再開されるように設定します。

再起動時に「MLServer」と「DDNSUpdater」を自動で起動するために、以下のシェルスクリプトを用意 します。

/home/pi/Desktop/MLServer/MLServer.sh

#!/bin/bash

dotnet /home/*pi*/Desktop/MLServer/MLServer.dll

/home/pi/Desktop/MLServer/DDNSUpdater.sh

#!/bin/bash

dotnet /home/pi/Desktop/MLServer/DDNSUpdater.dll

上記のシェルスクリプトを Windows で作成すると改行コードが「¥r¥n (CRLF)」となり、Linux 側では 正常に認識されないことがあります。「¥n (LF)」に変換する必要があります。 作成したシェルスクリプトに対して、以下のコマンドで実行権限を与えます。

\$ chmod 755 /home/*pi*/Desktop/MLServer/MLServer.sh\$ chmod 755 /home/*pi*/Desktop/MLServer/DDNSUpdater.sh

起動時に自動実行するシェルスクリプトを登録するためのディレクトリとファイル (autostart) を用意 します。

\$ mkdir -p ~/.config/lxsession/LXDE-pi
\$ cp /etc/xdg/lxsession/LXDE-pi/autostart ~/.config/lxsession/LXDE-pi/

autostart ファイルの最終行に、先程作ったシェルスクリプトを追加します。

	/home/pi/.config/lxsession/LXDE-pi/autostart												
@lxpanel –profile LXDE-pi													
@pcmanfmdesktopprofile LXDE-pi													
@xscreensaver -no-splash													
@lxterminal -e "/home/pi/Desktop/MLServer/MLServer.	sh" // この行を追加												
@Ixterminal -e "/home/pi/Desktop/MLServer/DDNSUpd	ater.sh" //この行を追加												

・Apache の導入

Apache は世界で最も使われている Web サーバーで、Raspberry Pi を親機とするのであれば簡単に導入 できます。以下のコマンドでインストールします。

\$ sudo apt install apache2 -y

デスクトップに置かれた「MLServer」ディレクトリ内の「data」ディレクトリを公開するため、以下のように設定を追加します。

	/etc/apache2/sites-available/000-default.conf
DocumentRoot /home/pi/Desktop/MLServer/data	
<directory <i="" home="">pi/Desktop/MLServer/data/></directory>	
Options Indexes FollowSymLinks	
AllowOverride None	
Require all granted	

以下のコマンドで Apache を再起動します。

\$ sudo service apache2 restart

・定期的な再起動の設定

Raspberry Pi を定期的に再起動させることで、MLServer が意図せずにクラッシュした場合にも再起動す るようにします。以下のコマンドで crontab を開きます。

\$ sudo crontab -e

開いたエディタで最終行に以下を追記し、毎日夜0時0分に再起動させます。

0 0 * * * /sbin/reboot

4) 遠隔監視画面の調整

MLServer は Fig. 5.6 に示すように、JSON 形式のファイルを使って現在値を書き出しています。遠隔監 視で表示される Web ページは、HTML+JavaScript でこの JSON 形式のファイル参照することで作られて います。

従って、ユーザーは HTML と JavaScript を使って遠隔監視画面の機能を拡張することができます。標 準では、Fig. 5.1 に示した「index.html」の他に、計測結果をマップで表示するための「map.html」が用意 されています。

「map.html」は Fig. 5.7 に示すように、計測値と図面を組み合わせて、熱環境のマップを表示させるための道具です。

Fig. 5.7 熱環境マップ表示の例

ただし、熱環境マップを有効にするには下処理が必要です。背景となるマップを用意して、マップのど の領域にどの計測器を対応させるかを決め、計測値を書き出す文字の位置を指定する必要があります。

・背景マップの用意

背景とするマップは、横幅 1000 px で png 形式の画像とします。縦幅は自動で調整されるため、任意です。これを「background.png」という名称で「data」ディレクトリに格納します(Fig. 5.8)。

Fig. 5.8 「background.png」の例

・領域の決定

計測値を割り当てるために、背景画像に領域を設定します。領域は長方形または多角形として設定するため、頂点の座標を調べます。座標系は画像の左上を(0,0)とし、右と下を正の値とします。Fig. 5.8 を 20 の領域に分け、それぞれの座標を調べた結果を Fig. 5.9 に示します。

・javascript の編集

領域を長方形または多角形で描画するため、「data」ディレクトリの中の「draw.js」を編集します。 「drowRegion」というメソッドの中の switch 文に計測で使っている M-Logger の XBee アドレスを追加し、 どの位置に描画するのかを記述します。

長方形の場合には、対角する 2 つの点の x,y 座標を使い、「rect(x0,y0,x1,y1)」と書きます。例えば 4 行と 5 行では「42114F57」というアドレスを持つ M-Logger に対して、(55,50)から(160,530)へ向かう長方形領 域を割り当てています。これは Fig. 5.9 の(1)の領域です。

n 個の頂点を持つ多角形の場合には「beginShape()」と「endShape(CLOSE)」メソッドの間に頂点を表す「vertex(x_n, y_n)」を追加していきます。16~24 行は Fig. 5.9 の(5)の領域を割り当てた例です。

なお、この機能は「p5.js」を使って実装しており、厳密には、描画の方法は長方形と多角形に限定されません。

1	<pre>function drawRegion(mloggerID){</pre>	43	break;
2	rectMode(CORNERS);	44	case "42114E92":
3	switch(mloggerID){	45	rect(660, 315, 810, 470);
4	case "42114F57":	46	break;
5	rect(55, 50, 160, 530);	47	case "420BCD7E":
6	break;	48	<pre>beginShape();</pre>
7	case "420BCD82":	49	vertex(270,470);
8	rect(160, 50, 510, 180);	50	vertex(810,470);
9	break;	51	vertex(810,315);
10	case "42114EB8":	52	vertex(875,315);
11	rect(510, 50, 875, 180);	53	vertex(875,470);
12	break;	54	vertex(960,470);
13	case "42114EF0":	55	vertex(960,530);
14	rect(875, 50, 960, 315);	56	vertex(270,530);
15	break;	57	endShape(CLOSE);
16	case "420BCCD1":	58	break;
17	<pre>beginShape();</pre>	59	case "42114E95":
18	vertex(160,180);	60	rect(510, 530, 630, 710);
19	vertex(510,180);	61	break;
20	vertex(510,315);	62	case "420BCDC3":
21	vertex(270,315);	63	rect(630, 530, 690, 710);
22	vertex(270,530);	64	break;
23	vertex(160,530);	65	case "42114E40":
24	endShape(CLOSE);	66	rect(690, 530, 780, 620);
25	break;	67	break;
26	case "42114F8F":	68	case "42114F7E":
27	rect(510, 180, 875, 315);	69	rect(690, 620, 780, 710);
28	break;	70	break;
29	case "420D3FC1":	71	case "42114EFA":
30	rect(55, 530, 160, 800);	72	rect(630, 710, 780, 800);
31	break;	73	break;
32	case "420BCD79":	74	case "420BCDD7":
33	rect(160, 530, 510, 660);	75	rect(780, 530, 875, 800);
34	break;	76	break;
35	case "420BCCDA":	77	case "42114F78":
36	rect(160, 660, 510, 800);	78	rect(875, 530, 960, 800);
37	break;	79	break;
38	case "420BCD0B":	80	default:
39	rect(360, 315, 435, 470);	81	break;
40	break;	82	}
41	case "42114F00":	83	}
42	rect(510, 315, 585, 470);	84	

Fig. 5.10 「draw.js」の例

5) BACnet への対応

MLServer は BACnet Device として動かすことができます。この機能を有効にするには「setting.ini」で「bacnet」を「true」にし、MLServer が動いているコンピュータの IP アドレスを「bacip」に設定します。 BACnet Device はそれぞれに通信用のポートを持ち、通常は 47809 以降の整数を使います。この値は「bacport」に設定します。

第6章 ハードウェアの仕様

6.1 LED 通知

子機には青、緑、赤の LED が取り付けられています。

青色 LED は無線によるデータの送受信状況を表しており、通信中は点滅します。この状態表示はソフトウェアで有効と無効を切り替えることができます。

緑色と赤色の LED は、Fig. 6.1 に示すように点滅回数と点滅間隔によってハードウェアの状態を表します。それぞれの状態を Table 6.1 に示します。

Fig. 6.1 状態表示

「able 6.1 状態表

色	回数 [回]	間隔 [sec]	状態
緑	1	1	親機からのコマンド受付中。フラッシュメモリ認識未了。
緑	2	1	親機からのコマンド受付中。フラッシュメモリ認識済。
緑	1	5	ロギング中。
両方	1	1	自動キャリブレーション中。(廃止予定)
赤	1	1	ロギング中にフラッシュメモリが認識できない。
赤	1	2	電池容量低下。
赤	2	2	XBee 初期化エラー。
赤	3	-	リセットスイッチ長押しによる常設モード解除成功。

6.2 通信仕様

親機と子機は Bluetooth または Zigbee 通信で文字列を送受信することで会話をします。

子機は5秒に1度、親機に対してコマンドが受信できることを伝えるためにWFC(Waiting For Command) という文字を発します。これ以外、子機は受け身で、親機からのコマンドに応答を返すだけで、自分から 能動的にデータを発しません。親機からのコマンドが正常に子機に伝わると、子機は何かしらの応答を返 します。

親機からのコマンドは3文字の予約語と、これに続く補足情報で構成されます。予約語の一覧を Table 6.2 に示します。

	予約語	機能	バージョン
VER	<u>VER</u> sion	子機のバージョンを取得する	
STL	<u>ST</u> art <u>L</u> ogging	計測とロギングを始める	
CMS	<u>C</u> hange <u>M</u> easurement <u>S</u> ettings	計測の設定を変更する	
LMS	Load Measurement Settings	計測の設定を取得する	
ENL	<u>EN</u> d <u>L</u> ogging	計測とロギングを終える	
SCF	Set Correction Factor	補正係数を設定する	
LCF	<u>L</u> oad <u>C</u> orrection <u>F</u> actor	補正係数を取得する	
SVC	Set Velocity Characteristics	風速計の特性係数を設定する	v. 3.4.0 以降
LVC	Load Velocity Characteristics	風速計の特性係数を取得する	v. 3.4.0 以降
CLN	<u>C</u> hange <u>L</u> ogger <u>N</u> ame	機器の名称を変更する	
LLN	<u>L</u> oad <u>L</u> ogger <u>N</u> ame	機器の名称を取得する	
CBV	<u>Calib</u> rate <u>V</u> elocity Voltage	無風電圧を自動校正する	廃止予定
CBT	<u>C</u> ali <u>b</u> rate <u>T</u> emperature	温度を自動校正する	廃止予定
SCV	<u>S</u> tart <u>C</u> alibrate <u>V</u> elocity Voltage	無風電圧の手動校正を始める	
ECV	<u>E</u> nd <u>C</u> alibrate <u>V</u> elocity Voltage	無風電圧の手動校正を終える	
HCS	<u>H</u> as <u>C</u> O2 <u>S</u> ensor	CO2 センサを持っているか否か	未実装
UCT	<u>U</u> pdate <u>C</u> urrent <u>T</u> ime	現在の日時を更新する	v. 3.3.17 以降

Table 6.2 予約語一覧

以下に、それぞれのコマンドの詳細を記します。親機が送信するコマンドは予約語と補足情報を含めて 72 文字以内です。1つのコマンドの終了を判断するため、最後に「¥r (Carriage Return)」をつけます。

• •		<u>, , 191</u>		/	•	'																	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
V	Е	R	¥r																				
24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71

・VER (VERsion) コマンド

子機の応答:「Vers:int.int.int」

(int はバージョンを表す整数値)

・STL (<u>ST</u>art <u>Logging</u>) コマンド

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
S	Т	L		現在時刻										t/f	t/f	¥r							
24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71

補足情報:

3~12: 現在の時刻。time_t (long) 型の UNIX 時間。

13: 結果を Zigbee 通信で送信するか否か。「t」で送信する、「f」で送信しない。「e」で無限計測モードへ。

14: 結果を Bluetooth 通信で送信するか否か。「t」で送信する、「f」で送信しない。

15: 結果をフラッシュメモリに書き出すか否か。「t」で書き出す、「f」で書き出さない。

子機の応答:「STL」

以降、定期的に「DTT:yyyy,MM/dd,HH:mm:ss, float,float,float,float,float,float,float,float,float,n/a,n/a,int」という応答 が続きます。

前半の「yyyy,MM/dd,HH:mm:ss」は日付と時刻を表します。後半の8つの float はそれぞれ、乾球温度 [°C]、 相対湿度 [%]、グローブ温度[°C]、風速 [m/s]、照度 [lx]、グローブ温度の電圧 [V](常に0)、微風速の 電圧 [V]、汎用 ADC 電圧[V]、を表します。その後の「n/a,n/a」は過去バージョンとの互換性のための文 字列で、意味を持ちません。最後の int は CO2 濃度[ppm]です。

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
С	М	S	t/f 温湿度 t/f グローブ							`温度	温度 t/f 風速							t/f	照	度			
24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
	照度												t/f			ADC	;		f	0	0	0	0
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
0	f	0	0	0	0	0	f	t/f		CC)2 濃	腹		¥r									

• CMS (<u>Change Measurement Settings</u>) $\exists \forall \lor \lor$

補足情報:

3: 温湿度を計測するか否か。「t」は計測する、「f」は計測しない。

4~8: 温湿度の計測時間間隔。5 桁以内の整数。

9: グローブ温度を計測するか否か。「t」は計測する、「f」は計測しない。 10~14: グローブ温度の計測時間間隔。5 桁以内の整数。 15: 風速を計測するか否か。「t」は計測する、「f」は計測しない。 16~20: 風速の計測時間間隔。5 桁以内の整数。 21: 照度を計測するか否か。「t」は計測する、「f」は計測しない。 22~26: 照度の計測時間間隔。5 桁以内の整数。 27~36: 測定開始時刻。time t (long) 型の UNIX 時間。 37: ADC を計測するか否か。「t」は計測する、「f」は計測しない。 38~42: ADC の計測時間間隔。5 桁以内の整数。 43~55:過去バージョンで使われていたパラメータ。「f00000f00000f」で固定する。 56: CO2 濃度を計測するか否か。「t」は計測する、「f」は計測しない。 57~61: CO2 濃度の計測時間間隔。5 桁以内の整数。

子機の応答:「CMS:bool,int,bool,int,bool,int,bool,int,long,bool,int,bool,int,bool,int,bool,int,bool,int]

bool は計測の真偽を表す 0/1、int は計測間隔を表す整数値、long は計測開始時刻を表す UNIX 時間で す。前から順に、温湿度、グローブ温度、風速、照度、計測開始時刻、汎用 ADC 電圧の設定です。次の 「bool,int,bool,int,bool」は過去バージョンで使われていた情報で、現在は意味を持ちません。最後の bool, int は CO2 濃度の計測の真偽と計測時間間隔です。

・LMS (Load Measurement Settings) コマンド

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
L	М	S	¥r																				
24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71

子機の応答:「LMS:bool,int,bool,int,bool,int,long,bool,int,bool,int,bool,int,bool,int,bool,int,bool,int] パラメータは CMS と同じです。

· Lu		<u>En</u> u	<u>L</u> og	ging/	-	· ~	1.																
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Е	Ν	L	¥r																				
24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71

・ENL (ENd Logging) コマンド

|子機の応答: [ENL]

70 71

68 69

• SCF (Set Correction Factor) $\exists \forall \lor \lor$

			_		_	-																	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
S	С	F	Ę	乞球》	昷度 .	A	卓	乞球》	昷度	В	木	目対測	显度	A	木	目対淡	显度	В		ブロー	ーブ	A	グ
24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
	ーブ	Ъ		照月	度 Α			照月	度Β			風	±Α			風	ΣΒ		風	速無	風電	圧	¥r
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71

補足情報:

共通:補正值=A×実測值+B

3~6: 乾球温度の補正係数 A×1000。A の範囲は 0.800~1.200 とします。

7~10: 乾球温度の補正係数 B×100。B の範囲は-3.00~3.00 とします。

11~14:相対湿度の補正係数 A×1000。A の範囲は 0.800~1.200 とします。

15~18:相対湿度の補正係数 B×100。B の範囲は-9.99~9.99 とします。

19~22: グローブ温度の補正係数 A×1000。A の範囲は 0.800~1.200 とします。

23~26: グローブ温度の補正係数 B×100。B の範囲は-3.00~3.00 とします。

27~30:照度の補正係数 A×1000。A の範囲は 0.800~1.200 とします。

- 31~34: 照度の補正係数 B×1。B の範囲は-999~999 とします。
- 35~38:風速の補正係数 A×1000。A の範囲は 0.800~1.200 とします。
- 39~42:風速の補正係数 B×1000。B の範囲は-0.500~0.500 とします。

43~46:風速の無風電圧×1000。範囲は1.400~1.550とします。

子機の応答:「SCF:float,float

乾球温度、相対湿度、グローブ温度、照度、風速の補正係数AとBが順に並びます。最後のfloatは無風時の電圧です。

					_																		
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
L	С	F	¥r																				
24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71

・LCF(Load Correction Factor) コマンド

子機の応答:「LCF:*float,floa*

• SVC (Set <u>Velocity Characteristics</u>) $\exists \forall \lor \lor$

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
S	V	С		無風	,電圧				特性	生係對	数 Α					特性	生係對	数 Β			特性	ŧ係劵	bС
24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
牛	寺性係	系数(С	¥r																			¥r
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71

補足情報:

3~6: 無風時の電圧×1000。範囲は 1.400~1.500 とします。

7~13: 特性係数 A×1000。

14~20: 特性係数 B×1000。

21~27: 特性係数 C×1000。(廃止予定)

特性係数は、v[m/s] = B(V/V_{ref}-1.0)^A

v : Velocity [m/s], V : Voltage [V], V_{ref} : Voltage under no wind condition [V]

子機の応答:「SVC:float,float,float]

無風時の電圧、特性係数 A、B、C が順に並びます。

• LVC (Load Velocity Characteristics) $\exists \forall \lor \lor$

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
L	V	С	¥r																				
24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71

子機の応答:「LVC:float,float,float]

パラメータは SVC と同じです。

・CLN (<u>Change Logger Name</u>) コマンド

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
С	L	Ν									檨	幾器の	D名利	尓									¥r
24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71

子機の応答:「CLN:機器名称」

・LLN(\underline{L} oad \underline{L} ogger \underline{N} ame) コマンド

				-	_																		
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
L	L	Ν	¥r																				
24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71

子機の応答:「LLN:機器名称」

01		(<u>e</u> un	<u>_</u> 1410		eneg	o eno	01/	-	• 1														
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
С	В	V			秒数			¥r															
24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71

・CBV (Calibrate Velocity Sensor) コマンド

子機の応答:「CBV:残り秒数」

立ち上げのために 60 秒間待機した後、設定した秒数だけ、風速計の電圧値が計測され、その平均値を使って無風電圧が初期化されます。ただし、1.4V< 無風電圧 <1.55 V の範囲にある場合のみ、有効とされます。子機からの送信される残り秒数は、補正完了までの待ち時間です。

・CBT (<u>Calibrate Temperature Sensor</u>) コマンド

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
С	В	Т			秒数			¥r															
24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71

子機の応答:「CBT:残り秒数」

立ち上げのために 60 秒間待機した後、設定した秒数だけ、乾球温度計とグローブ温度計の状態値が計測 され、乾球温度計の値を目的変数、グローブ温度計を説明変数とした回帰係数が求められます。これらの 回帰係数によってグローブ温度計の補正係数が初期化されます。ただし、回帰直線の傾きが 0.7~1.3、切 片が-2~2 の範囲にある場合のみ、有効とされます。子機からの送信される残り秒数は、補正完了までの 待ち時間です。

・SCV (<u>Start Calibrate Velocity Voltage</u>) コマンド

		_						U															
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
S	С	V	¥r																				
24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71

子機の応答:「SCV:電圧[V]」

毎秒、風速電圧が計測されます。

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Е	С	V	¥r																				
24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71

• ECV (<u>End C</u>alibrate <u>V</u>elocity Voltage) $\exists \forall \lor \lor$

子機の応答:「ECV」

•	HCS	(Has CO2 Sensor)	コマンド
	nco	$(\underline{\Pi}as \underline{C}O2 \underline{D}c\PisOI)$	

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
H	С	S	¥r																				
24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71

子機の応答:「HCS:bool」

CO2 センサがあれば1、そうでなければ0が出力されます。

・UCT (<u>Update Current Time</u>) コマンド

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
U	С	Т	現在時刻										¥r	-	-	-	-	1	1	1	-	-	-
24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

補足情報:

3~12:現在の時刻。time_t (long)型の UNIX 時間。

子機の応答:「UCT」

【参考文献】

- 1) Digi XBee 3 RF Module, Hardware Reference Manual, Revision V, 2022.3
- 2) HT77xxBA, 5V/200mA PFM, Asynchronous Step-up Converter, Datasheet, Holtek, Rev. 1.20, 2021.8.17
- MCP9700/9700A/MCP9701/9701A, Low-Power Linear Active Thermistor[™] ICs, Microchip, Datasheet, DS20001942F
- ATMega328P, 8-bit AVR Microcontroller with 32K Bytes In-System Programmable Flash, Datasheet, Atmel, Rev. 7810D–AVR–01/15
- 5) AVR32DB28/32/48, AVR DB Family, Datasheet, Microchip, Revision DS40002301A
- 6) VCNL4030X01, Datasheet, Vishay, Revision 1.2, Document Number 84250, 2020.3.18
- 7) 富樫英介:室内温熱環境の廉価な無線計測記録装置の開発,日本建築学会技術報告集, Vol. 28, No.68, pp. 267-272, 2022.2, DOI: 10.3130/aijt.28.267
- 8) 濱原和明: 超お手軽無線モジュール XBee, QC 出版株式会社, 2012.3.1